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Models for the growth of grain boundary voids may be extended to describe the strain-time 
response of a stressed material containing an array of gas-filled grain boundary bubbles. 
Above a critical value of applied stress the bubbles grow indefinitely until failure of the material 
occurs. Below this critical value significant anelastic strain may be observed following a stress 
change. The strain is not easily formulated explicitly in terms of time but may be evaluated 
using numerical techniques. 

1. I n t r o d u c t i o n  
The stress-assisted growth of grain boundary voids 
arising from the ability of  the boundaries to act as 
perfect sources and sinks for vacancies has been the 
subject of  detailed and comprehensive analysis in the 
literature. See, for example, the review by Cocks and 
Ashby [1]. In most cases the differential equation 
describing the rate of  void growth takes the form 

OV/~ t  = K F  (1) 

where Fis a driving force for growth and K a parameter 
which for example [1] may take the form 

K = 2 ~ w D g / k T  (2) 

whilst a more detailed analysis [2] in which the increase 
in volume of the cavities due to the jacking apart of  
adjacent grains during creep has been considered leads 
to 

K = 2 1 r ~ w D g / k T { l n  (l /r)  

- [1 - (r2/12)][3 - (r2/12)]/4} (3) 

where Dg is the grain boundary self diffusivity, w the 
boundary width, and fl the atomic volume. The void 
spacing is 2l and the void radius is r. Fwhich is a term 
describing the driving force for void growth consists of  
the applied stress a and a second term - 2 7 / r  arising 
from the surface tension 7 which opposes such growth 
[2]. 

In this paper we consider the case where the cavity 
is initially a bubble of  radius r0 containing gas at a 
pressure P which balances the surface tension such 
that with no applied stress 

P = 27/r  o (4) 

Such bubbles may occur by diffusion of gas through 
the material or in nuclear materials from internal 
fission gas. The pressure term must be included in the 
expression for the driving force for bubble growth so 
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that the full expression is 

F = cr - (2y/r) + P ( r )  (5) 

where P(r )  is the pressure as a function of the bubble 
radius r. Assuming that the ideal gas law holds, this 
function may be written as 

P(r)  = (2~/ro)(ro/r)  3 (6) 

so that Equation 5 becomes 

F = a - (2?/ro)[ro/r - (re/r) 3] (7) 

This driving force is shown plotted in normalized 
form against bubble radius in Fig. 1 from which it is 
noted that for all compressive stresses and for low 
tensile stresses the curve crosses the horizontal axis. 
However above a critical value o* a minimum growth 
rate is reached but the curve does not become negative 
and the bubble grows indefinitely until specimen fail- 
ure occurs. Differentiating Equation 7 to find the 
minimum F* leads [3] to 

F *  = cr - ( 27 / ro ) (2 /3 , f 3 )  (8) 

The critical stress is when F* is zero 

a* = (22 / ro) (2 /3 , , f i )  (9) 

Three distinct types of response to an applied stress 
may be described with reference to Fig. 1: (i) a < 0 
(ii) 0 < cr < 0" (iii) cr > 0*. In case (i) the bubble is 
initially in equilibrium at point a with no applied 
stress and radius r0. A compressive stress is then 
applied instantaneously along ab and the bubble then 
shrinks progressively along be according to Equation 
1. At point e equilibrium is once more achieved and 
the bubble ceases to change in volume. If the stress is 
then instantaneously removed along ed the bubble 
grows along da until the original radius is reached at 
point a. The corresponding "circuit" aefg is indicated 
for tension (case (ii)) in the same figure. If, however, 
a supercritical tensile stress is applied to point h (case 
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Figure 1 Equation 7 plotted in normalized form 
for various stress levels, ar0/2 7 (a 0.5, b 0.3, e 0, 
d - 0.3). 

(iii)) then the bubble continues to grow until failure of 
the material occurs. 

2. Ana ly t ica l  approach 
In order to obtain quantitative information on the 
strain-time response of a material containing gas-filled 
grain boundary bubbles, consider the case where 
identical bubbles are arranged in a simple array on the 
boundaries. Let l >> r and let the grain size be d. The 
specimens strain is given by 

e = 4=(r 3 - r~) /3dl  2 (10) 

Differentiating with respect to the bubble radius 

&fl?r  = 4FrZ / d l  2 (11)  

The strain rate in compression is given by 

& / O t  = ( & / O r ) ( a V / O t ) ( O r / O V )  

= ( K / d l Z ) { - ~ r  - (2?/ro)[(ro/r)  - (ro/r)3]} (12) 

Substituting K from Equation 2 and writing f(o-) = 
- a  - (27/ro)[(ro/r)  - (ro/r) 3] leads to 

~e/~t  = 2 ~ z f ~ w D g f ( a ) / d l Z k T  (13) 

Then writing f~ ~ b 3 and w ~ 2b where b is Burger's 
vector and introducing the shear modulus G as a 

stress normalizing factor 

& / &  = ( 4 ~ z D g G b / k T ) ( b / d ) ( b / l ) 2 ( f ( a ) / G )  (14) 

This expression has the same general form as the Dorn 
equation and is shown plotted for different values of 
o- (r0 constant) and r0 (a constant) in Figs 2 and 3, 
respectively. An appropriate value of Dg was taken 
from Brown and Ashby [4]. For  low values of r/ro the 
bubble radius has the most influence on the strain rate 
whereas for higher values of r/ro the value of the 
applied stress is more significant. 

To obtain the strain-time response of the material it 
is required to write Equation 12 in terms of strain. By 
substituting from Equation 10 

Og/c?t = K{cr - 27[(1 + 3edl2/4rrr~) -'/3 

- (1 + 3edl2/4rcr~)-~]/ro} /dl  2 (15) 

The integration of Equation 15 is intractable and 
therefore numerical techniques are required to predict 
strain-time behaviour. 

3. Numerical analysis 
For the numerical analysis the more exact form of the 
bubble growth equation due to Speight and Beere [2] 
was used. The controlling differential equation was, 
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Figure 2 Equation 13 plotted for various values of  
stress (a 3 MPa, b 2 MPa, c 1 MPa, d no applied 
stress), The initial bubble radius is 1 #m. 
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Figure 3 Equation 13 plotted for various values of 
initial bubble radius (a 2#m, b tffm, c O,5/xm). 
There is no applied stress. 

Figure 4 Strain-time plots for anelasticity due to 
grain boundary bubbles for several values of 
stress (a 3 MPa, b 2 MPa, c 1 MPa) as predicted 
for compression by the numerical analysis. 
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therefore, formed by combining Equations l, 3 and 5, 
noting that for compression the value of ~ is negative. 
In a time interval cSt the bubble shrinks by a volume 6 V 
given by this equation. A corresponding volume of 
vacancies is absorbed by the grain boundary which is 
assumed to act as a perfect sink. Assuming a square 
array on the boundary this leads to a strain increment 
of 

~58 = ~ S V / d ( l  2 - -  rcr 2) (16) 

The process is repeated until point c is reached (Fig. 1); 

that is when c~ V = 0. The magnitude and time depen- 
dence of the anelastic effect are shown in Fig. 4 for 
different values of stress. Quite large anelastic strains 
are produced in compression. Fig. 5 shows the depen- 
dence of the maximum strain on (a) the applied stress 
and (b) the bubble spacing. Only at quite low stresses 
is the maximum strain strongly dependent on the 
stress. As the bubble spacing decreases the maximum 
strain increases rapidly as a larger volume fraction of 
the material becomes composed of compressible gas. 

For tension there is only a limiting value of r/r0 
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Figure 5 The dependence of the maximum strain on (a) the applied shess and (b) the bubble spacing as determined by the numerical analysis 
for compression. 
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when the applied stress has a value below or*. Thus the 
stresses involved in this case and hence the magnitude 
of the anelastic strains are much smaller than for 
compression. 

4. Conclusions 
Well established models for the growth of grain 
boundary voids have been used to demonstrate that 
significant anelastic strains can result in materials con- 
taining arrays of gas-filled grain boundary bubbles. 
The strain-time response of such a material cannot 
easily be derived analytically but may be evaluated 
using numerical techniques. 

For compressive stresses quite large anelastic 
strains can occur, the maximum strain being sensitive 
to stress and the bubble spacing. For tension an 
applied stress above a certain critical value leads to 
continuous bubble growth which eventually results in 
failure of the material. Below this critical value anelas- 
tic strains may be observed but these are smaller than 
for compression due to the lower stress involved. 
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